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Large Upward Bias in Estimation of Locus-Specific Effects
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The primary goal of a genomewide scan is to estimate the genomic locations of genes influencing a trait of interest.
It is sometimes said that a secondary goal is to estimate the phenotypic effects of each identified locus. Here, it is
shown that these two objectives cannot be met reliably by use of a single data set of a currently realistic size.
Simulation and analytical results, based on variance-components linkage analysis as an example, demonstrate that
estimates of locus-specific effect size at genomewide LOD score peaks tend to be grossly inflated and can even be
virtually independent of the true effect size, even for studies on large samples when the true effect size is small.
However, the bias diminishes asymptotically. The explanation for the bias is that the LOD score is a function of
the locus-specific effect-size estimate, such that there is a high correlation between the observed statistical significance
and the effect-size estimate. When the LOD score is maximized over the many pointwise tests being conducted
throughout the genome, the locus-specific effect-size estimate is therefore effectively maximized as well. We argue
that attempts at bias correction give unsatisfactory results, and that pointwise estimation in an independent data
set may be the only way of obtaining reliable estimates of locus-specific effect—and then only if one does not
condition on statistical significance being obtained. We further show that the same factors causing this bias are
responsible for frequent failures to replicate initial claims of linkage or association for complex traits, even when
the initial localization is, in fact, correct. The findings of this study have wide-ranging implications, as they apply
to all statistical methods of gene localization. It is hoped that, by keeping this bias in mind, we will more realistically
interpret and extrapolate from the results of genomewide scans.

Introduction

The primary goal of a genomewide scan, by linkage and/
or by association analysis, is to localize genes whose
variation influences the observed phenotypic variation.
A secondary goal, at least in the opinion of some in-
vestigators, is to estimate the effects of each identified
locus on the phenotype (e.g., Blangero et al. 2000). This
can be measured by estimating parameters that char-
acterize the relationship between genotype and pheno-
type—for example, locus-specific heritability, locus-spe-
cific recurrence risk to relatives, and the risk attributable
to a specific allele or genotype. Clinically and epidemi-
ologically oriented researchers, in particular, often tend
to view the estimation of locus-specific effects, especially
if estimated as an attributable risk, as an integral and
crucial component of a genome scan.

In this study, we demonstrate that the chromosomal
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position and the genotype-phenotype relationship of a
locus cannot both be estimated reliably by use of a single
data set of currently realistic size, at least for loci of
small effect size. The fundamental problem of joint es-
timation is that the statistic providing evidence for the
presence of a locus at a given chromosomal location,
typically given in the form of a LOD score, is itself a
function of the parameter(s) characterizing the geno-
type-phenotype relationship. Statistical significance and
the estimated parameter(s) therefore are not indepen-
dent but are highly correlated. When the test statistic
is maximized over the many pointwise tests in the ge-
nome, the estimates of the parameter(s) characterizing
the locus-specific effects thus are effectively maximized
as well. The obvious sampling bias in the reported test
statistics results in a less-obvious sampling bias in the
reported parameter estimates, which tend to be grossly
inflated. This is borne out empirically by the observation
that most follow-up studies give lower estimates of ef-
fect size than do the initial studies.

As an example, we focus on the additive phenotypic
variance attributable to the genetic variation at a quan-
titative trait locus (QTL), which is a free parameter
estimated in variance-components (VC) linkage analy-
sis. The bias in QTL heritabilities has been noted else-
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where in agricultural plant and animal species (Lande
and Thompson 1990; Beavis 1994; Utz and Melchinger
1994; Georges et al. 1995; Kearsey and Farquhar 1997;
Beavis 1998; Melchinger et al. 1998; Utz et al. 2000),
but this literature is largely unknown to “gene hunters”
on human data. Here, we provide a systematic overview
of the problem, using both genomewide simulation of
human pedigree data and approximate analytical so-
lutions. It is shown that the bias is a function of the
true effect size, the sample size, and other factors, which
together also determine the power of a study. On small
samples—small in the sense of having low power to
detect QTLs of realistic effect size, but potentially much
larger than most current human-pedigree data sets—the
estimates of QTL heritability at LOD-score peaks can
be virtually independent of the true state of nature.

It is important to keep in mind that VC linkage anal-
ysis and estimates of QTL effect size derived from it are
only an example used here for demonstration purposes.
The same bias applies to all other methods of gene lo-
calization and estimates of any underlying parameter
relating marker-locus genotypes and trait phenotypes,
if these parameters are estimated at peaks of the test
statistic. The main goal of this study is to make inves-
tigators aware of the existence and severity of this prob-
lem in general.

Brief Overview of VC Linkage Analysis

Let us first give a brief overview of those aspects of
VC linkage analysis that are required for the understand-
ing of this study. For further details, the reader is referred
to the original articles by (for example) Lange et al.
(1976), Hopper and Mathews (1982), Goldgar (1990),
Amos (1994), and Almasy and Blangero (1998), as well
as the recent reviews by Blangero et al. (2000, 2001).

VC pedigree analysis assumes that both genetic and
environmental factors have effects on the phenotype of
interest. The phenotypic covariance among study par-
ticipants is modeled as a function of independent, ad-
ditive variance components, which are estimated by
maximum likelihood. In the most basic model of VC
linkage analysis, under the alternative hypothesis of link-
age (i.e., the presence of a QTL at the chromosomal
location being tested), the overall phenotypic variance
( ) is modeled as the sum of the phenotypic variances2j

attributable to the additive effects of a QTL at the given
chromosomal position ( ), the aggregate additive effects2jq

of genes elsewhere in the genome ( ), and individual-2jp

specific environmental effects and/or measurement er-
rors ( ). Under the null hypothesis of no linkage (i.e.,2je

the absence of a QTL at or near the chromosomal lo-
cation being tested), is set to 0. The statistical evidence2jq

for linkage is evaluated by a likelihood-ratio test, which
is typically presented as a LOD score:

2 2 2( )max L j , j , jq p e
2 2 2j ,j ,jq p e

Z p log .10 2 2 2( )max L j p 0, j , jq p e
2 2j ,jp e

denotes the likelihood. Asymptotically, the likeli-L ( )
hood-ratio statistic, , is assumed to beL p 2 ln (10) Z
distributed as an equal mixture of a x2 random variable
with 1 df and a point mass at 0 (Self and Liang 1987).

As a function of these variance components, the (ad-
ditive) heritability of the trait can be written as

2 2j � jq p2h p ,2j

and the (additive) heritability attributable to the QTL
can be written as

2jq2h p .q 2j

For brevity, we refer to as “QTL effect size” and to2jq

as “QTL heritability.”2hq

Sources of Bias

There are a variety of sources of bias in QTL effect-
size estimates. Here, we will distinguish between two
types of bias. By “pointwise sources of bias,” we mean
the factors leading to a bias in the QTL-heritability es-
timate when linkage analysis is conducted at a single
position, q, in the genome, and the QTL heritability is
estimated independently of the magnitude of the LOD
score—that is,

2( )L hq

Z p max log . (1)q 10 2[ ]2 ( )L h p 0h qq

By “genomewide sources of bias,” we mean the addi-
tional bias resulting from joint estimation of locus po-
sition and effect size in scans of the whole genome or
parts thereof—that is,

2( )L hq

Z p max max log . (2)max 10 2{ [ ]}2 ( )L h p 0q h qq

Of course, a genome scan may provide statistically sig-
nificant evidence not just for one locus but for multiple
loci or for none at all. Equation (2) is meant to illustrate
the multiple-testing problem that results in genomewide
bias, independent of whether the genomewide maximum
LOD score is significant. This genomewide bias may also
be viewed as a type of pointwise bias, resulting when
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the QTL heritability is estimated only when the LOD
score exceeds some threshold.

In addition to these intrastudy sources of bias, there
are interstudy sources of bias, because results from suc-
cessful scans are presumably more likely to be reported.
This last source of bias is beyond the scope of this study,
but it is expected to have the general effect of magnifying
the bias described here.

Pointwise sources of bias.—There are many reasons
why QTL-heritability estimates may be biased if com-
puted at a single point in the genome. In general, esti-
mates of bounded parameters are often biased, whether
obtained by maximum likelihood or any other method.

is defined on the interval , as it is a proportion.2h [0,1]q

For , the boundaries of its domain (0 and 1)2h ( 0.5q

are asymmetrical, which necessarily leads to an asym-
metrical distribution of , and is expected to result inˆ 2hq

bias. In most cases, the closer to a boundary the true
value of the parameter, the larger the bias from this
source. As QTL heritabilities for complex traits are ex-
pected to be small in general, on the basis of both em-
pirical evidence and theoretical considerations (e.g.,
Blangero et al. 2000; Terwilliger and Göring 2000; Weiss
and Terwilliger 2000), the pointwise bias from this
source will typically be upward. However, under quite
general “standard” conditions, maximum-likelihood es-
timates are consistent—that is, the estimate gets arbi-
trarily close to the true value with increasing sample size.
This type of bias, therefore, goes away asymptotically.
Under suitable circumstances, pointwise estimates of
QTL heritabilities can be “effectively unbiased” (Wil-
liams et al. 1997).

There are many other reasons why pointwise QTL-
heritability estimates are often biased in more-serious
ways, where the bias does not disappear asymptotically
and often goes hand in hand with an inflated false-pos-
itive rate. Sometimes, VC-based pedigree analysis is con-
ducted on pedigrees that are ascertained independent of
the phenotypes being studied. Such so-called “random
ascertainment” minimizes the risk of ascertainment bias
and has been assumed in the simulations and analytical
expressions presented in this study. Often, however,
other ascertainment protocols are used to increase the
power of gene mapping. In general, this is expected to
result in a potentially large bias in the estimation of
genotype-phenotype relationships, because samples as-
certained on a given phenotype are not representative
of the population as a whole, with respect to that phe-
notype. Real-world ascertainment schemes rarely con-
form to simple mathematical models, and correction for
such ascertainment bias may be complicated or impos-
sible—not least because directed ascertainment typically
enriches for certain etiological factors at the expense of
others (see, e.g., Fisher 1934; Boehnke and Greenberg
1984; Boehnke and Lange 1984; Beaty et al. 1987; Rao

et al 1988; Comuzzie and Williams 1999). Furthermore,
the phenotypic distribution is rarely perfectly multivar-
iate normal and sometimes deviates a great deal from
that distribution, violating the inherent assumptions of
standard VC linkage analysis. This generally leads to
biased parameter estimates and, potentially, to an in-
creased false-positive rate (see, e.g., Allison et al. 1999;
Blangero et al. 2001). It should be mentioned, however,
that variants of VC linkage analysis that are more robust
to violations of this assumption now exist (see, e.g.,
Lange et al. 1989; Blangero et al. 2001). In addition,
gene # gene interactions (i.e., epistasis) and gene #
environment interactions also typically inflate locus-spe-
cific heritability estimates, since interactions, if not mod-
eled, can inflate the apparent marginal effects. Environ-
mental factors shared among relatives, including
prenatal environment, mimic genetic similarity between
relatives and thus inflate the estimated trait heritability
(Terwilliger et al., in press) and, under certain circum-
stances, estimates of QTL heritability as well. Assorta-
tive mating generally has similar consequences (see, e.g.,
Crow and Kimura 1970; Falconer and Mackay 1996;
Mukhopadhyay et al. 2000). By contrast, many types of
errors—for example, genotyping errors—are expected to
lead to deflated estimates of parameters describing the
genotype-phenotype relationship, resulting in, for ex-
ample, an inflated estimate of the recombination fraction
(see, e.g., Göring and Terwilliger 2000a, 2000b, 2000c).
Although such pointwise sources of bias clearly are very
important, we assume their absence in this study, to high-
light the magnitude of the bias due to genomewide mul-
tiple testing alone.

Genomewide sources of bias.—The main focus of this
article is on genomewide sources of bias—namely, the
bias that results when QTL effects are reported only at
the chromosomal position(s) where the test statistic
peaks and exceeds some chosen threshold. When max-
imizing the LOD score over the genome or over parts
thereof, as shown in equation (2) above, one is really
engaged in a multiple-testing experiment (see Jones and
Rushton [1982] for a general overview of simultaneous
statistical inference). The simple explanation for why the
obvious sampling bias in the reported LOD score ex-
tends to a bias in the reported QTL-heritability estimate
is that the LOD score is a function of the QTL herita-
bility parameter, as shown in equation (1) above. andZ

are therefore not independent. In fact, for a givenˆ 2hq

data set, assuming constant information on meiotic
transmissions throughout the genome, there is essentially
a one-to-one correspondence between LOD scores and
QTL-heritability estimates, which then provide redun-
dant information (see fig. 2). Typically, however, the
available information on chromosomal segregation var-
ies from point to point throughout the genome, because
of differences in marker density, marker informativeness,
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and which individuals are genotyped at a given mar-
ker—among other reasons, including genotyping, map,
and other errors. Although the one-to-one correspon-
dence between LOD scores and QTL-heritability esti-
mates then no longer holds, and remain positivelyˆ 2Z hq

correlated. By maximization of the LOD score over the
genome or over parts thereof, the estimate of QTL her-
itability is thus effectively maximized as well, resulting
in an upward bias. The bias from genomewide testing
may also be viewed as a type of pointwise bias that
results when the QTL heritability is estimated only when
the LOD score is significant. Even if pointwise estimates
of locus-specific effect size were unbiased when esti-
mated irrespective of the LOD score, they cannot be so
conditional on the linkage test being significant, given
the correlation of the LOD score and the QTL-herita-
bility estimate.

In many respects, performing a genomewide scan is
analogous to statistical model selection, where the chro-
mosomal positions tested correspond to the model pa-
rameters considered, and the estimated locus-specific ef-
fects at chromosomal positions of the peaks of the test
statistic correspond to the estimated values of the pa-
rameters chosen for the model. A difference, however,
is that chromosomal positions are generally tested in-
dividually, one at a time. It is well known that estimates
of parameters that are selected for the model on statis-
tical grounds are biased if the same data set is used for
model selection and parameter estimation (e.g., Miller
1990; Faraway 1992). The stricter the criteria are for
including a parameter in the model, the larger the bias
is expected to be. In genomewide linkage scans, the prob-
lem is severe, because the large number of tests requires
a high threshold for significance. Consequently, the cus-
tomary LOD score of 3 for the declaration that a linkage
finding is significant asymptotically corresponds to a
pointwise P value of .0001 (Morton 1955), which is
much smaller than the P value of .05 commonly used
as a standard in pointwise statistical analysis. The au-
tocorrelation of the test statistic and, equivalently, of the
locus effect-size estimate along the chromosomes de-
pends on many factors, including the nature of the data
and analysis method, and the appropriate genomewide
significance threshold could be chosen accordingly (see
also Lander and Kruglyak 1995). For genomewide scans
for allelic association, the problem is even more severe,
as the autocorrelation of the test statistic is lower. In
other words, the number of equivalent independent tests
is greater, requiring a significance threshold far in excess
of a LOD score of 3, even though this is generally not
practiced currently (see also Risch and Merikangas
1996). The same problem applies, to a still greater de-
gree, to joint tests of linkage and association.

The bias caused by genomewide testing disappears

asymptotically. However, as shown below, most current
data sets for mapping of complex traits in humans have
nowhere near the required size to make the genomewide
bias negligible.

Results

Simulation Results

We have investigated the genomewide bias in QTL-
heritability estimates by simulation. The simulated data
set consisted of 1,000 randomly ascertained nuclear fam-
ilies with two offspring each. The genome comprised 22
autosomal chromosomes with a total genome size of
3,300 cM. Marker genotypes of both parents and off-
spring were simulated for fully informative markers
spaced at a density of 2 cM throughout the genome.
Quantitative-trait phenotypes were simulated for all in-
dividuals. The overall (additive) trait heritability, , was2h
set to 0.5, attributable to 0–5 unlinked QTLs with

each (or 0–10 QTLs with each) and2 2h p 0.1 h p 0.05q q

nonlocalized polygenic effects. Each QTL was diallelic,
with equally frequent alleles, and was located in the
middle of a chromosome. The remaining phenotypic var-
iance was due to individual-specific effects. Phenotypic
effects of dominance, covariates, shared environment,
and any other complicating factors were assumed to be
absent. Marker maps, marker genotypes, and pheno-
typic data were assumed to be accurate. Two-point VC-
based linkage analysis was conducted on each marker
using SOLAR (Almasy and Blangero 1998). All LOD
score peaks �3, their chromosomal locations, and their
associated QTL-heritability estimates were recorded. For
genome scans without a LOD score �3, the highest LOD
score in the genome, its position, and its associated QTL-
heritability estimate were recorded instead, as investi-
gators generally still publish the findings of such studies
and discuss at least the highest peak. For each different
simulation setting, 500 replicates (i.e., full genome scans)
were analyzed. By design, the size of the data set, al-
though large compared with that of most real-world
mapping studies, is too small to detect the simulated
QTLs with high power, since this appears to be the re-
ality for most genome scans of complex traits to date
(e.g., Terwilliger and Göring 2000; Weiss and Terwilliger
2000). Alternative study designs, such as large, multi-
generational pedigrees, involving an equal number of
individuals may be more powerful (see Williams and
Blangero 1999; Blangero et al. 2000) and may lead to
a somewhat smaller bias. In all other respects, the sim-
ulation conditions represent a best-case scenario, de-
signed to minimize the resulting bias.

We first examined estimates of overall trait heritabil-
ity, as well as estimates of QTL heritability obtained at
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Figure 1 Distribution of pointwise QTL-heritability estimate at position of QTL. p the generating value for additive trait heritability2hq

attributable to QTL; p its sample estimate. See text for details of the simulation.ˆ 2hq

the exact chromosomal position of a QTL, to verify the
correctness of our simulation and analysis procedure.
The mean value of across replicates was 0.498, es-ˆ 2h
sentially identical to the generating value. Figure 1 shows
the pointwise distribution of at the true position ofˆ 2hq

a QTL across replicates, for generating value 2h pq

. The distribution is clearly skewed, with a long0.05
upper tail and a large point mass at the lower boundary
of 0, and the expected value of , 0.062, is somewhatˆ 2hq

biased upwards. For , the mean estimate was2h p 0.1q

0.104 (data not shown). The decrease in bias is simply
due to the fact that the larger generating value is further
away from the lower boundary, thus reducing the skew-
ness resulting from the point mass at 0. Note that the
observed pointwise biases are not large under the ideal
circumstances simulated.

We next examined the properties of these estimates in
genomewide scans. Figure 2 shows that, in a given data
set, under the assumption of complete information on
chromosomal segregation throughout the genome, there
is essentially a one-to-one correspondence between the
observed LOD score and its associated QTL-heritability
estimate. In this situation, in fact, the LOD score is es-
sentially a linear function of (Williams and Blangeroˆ 2 2(h )q

1999). If the information on meiotic transmission varies
throughout the genome—in other words, if the effective
sample size varies in terms of “equivalent number of
meioses” (Edwards 1976)—the one-to-one correspon-
dence breaks down, but statistical significance and the

locus-specific effect-size estimate remain positively cor-
related. We therefore expected that the estimates of QTL
heritabilities at genomewide LOD score peaks would be
biased upwards.

Table 1 shows that this is, indeed, the case. It gives
the average QTL-heritability estimate at the chromo-
somal position of the genomewide maximum LOD score
(columns labeled ) and at the chromosomal posi-Zmax

tions of LOD score peaks of at least 3 (columns labeled
), as a function of the number of QTLs with 2Z h p�3 q

in the genome. Let us first focus on the estimates for0.1
both true and false peaks. In the baseline case, when
there is no mappable QTL in the genome (i.e., 2h pq

), the mean estimate of associated with isˆ 20.0 h Zq max

∼0.24, demonstrating the magnitude of the bias due to
maximization of the LOD score over the genome. When
there are mappable QTLs in the genome, essentially
identical estimates are obtained. The same also holds for
QTLs with (data not shown). The QTL-her-2h p 0.05q

itability estimates thus are of similar magnitude, no mat-
ter what the true QTL heritabilities are or whether any
mappable QTLs exist at all. Under the simulation set-
tings, the estimates are therefore essentially independent
of the true state of nature. Table 1 also gives the QTL-
heritability estimates associated with only those LOD
score peaks meeting or exceeding the customary LOD
score threshold of 3 (Morton 1955), in which case the
bias is even greater. For the simulated data set of 1,000
fully informative nuclear families, the QTL-heritability
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Table 1

Mean QTL-Heritability Estimates at Genomewide LOD Score Peaks

NO. OF

QTLS IN

GENOME

FORˆ 2E[h ]q

True and False Peaks, at True Peaks, ata

Zmax Z�3 Zmax Z�3

0 .236 .298 NA NA
1 .242 .300 .251 NO
2 .246 .301 .256 .301
3 .249 .302 .258 .303
4 .253 .301 .259 .301
5 .254 .301 .260 .301

NOTE.— p mean QTL-heritability estimate; p genome-ˆ 2E[h ] Zq max

wide maximum LOD score; LOD score peaks �3. The true gen-Z�3

erating value for the additive trait heritability attributable to each QTL
was 0.1. See text for details of simulations.

a NA p not applicable; NO p not observed.

Figure 2 Nearly one-to-one relationship of QTL-heritability estimate and observed LOD score under full information on meiotic trans-
missions. Z p observed LOD score; p sample estimate of additive trait heritability attributable to QTL. See text for details of the simulation.ˆ 2hq

estimate simply must be nearly 30% for the LOD score
to be significant, no matter what the true state of nature
is.

Some investigators may hesitate to speak of a bias in
QTL-heritability estimates when the true QTL herita-
bility is 0 (i.e., when there is no QTL at the given chro-
mosomal location). However, this surely is the situation
for most of the genome and therefore is a relevant sit-
uation to consider. Besides, in real life, one generally
cannot determine whether a LOD score peak is a true
or false positive, just as one often does not know whether
there really are any major QTLs to be mapped in the
first place. In any case, the two rightmost columns of
table 1 focus only on those LOD score peaks that are
true positives, defined here arbitrarily as a peak occur-
ring within 25 cM of a QTL. As before, the QTL-her-
itability estimates are greatly inflated. The estimates are
very similar when both true and false peaks are consid-
ered or only true peaks. For a study with low power,
like that simulated here, one can essentially predict from
the outset what the estimated QTL heritabilities are
likely to be.

These simulations assumed fully informative markers
throughout the genome and complete, error-free infor-
mation in general. Of course, this is not the case in real
studies. As a result, in real data the autocorrelation of
the test statistic along the chromosome is decreased (i.e.,
the LOD score fluctuates more), the genomewide false-
positive rate is increased (Terwilliger et al. 1997), and
the bias is exacerbated further (data not shown).

Analytical Results
Let us also derive an analytical expression for the ge-

nomewide bias in QTL-heritability estimates. For math-

ematical tractability, a number of simplifying assump-
tions were made. The bias resulting from genomewide
testing is approximated by the pointwise bias occurring
at the true position of a QTL when one conditions on
the LOD score being significant. As in the simulations,
we assume complete and accurate information on chro-
mosomal segregation and phenotype. Furthermore, the
analytical expressions do not allow for differences in
overall trait heritability between the total population
and samples obtained from it. Despite these simplifica-
tions, the analytically derived results correspond closely
to those from the simulations.

Let be the cutoff for declar-l p 2 ln (10) # 3 ≈ 13.8
ing the VC likelihood-ratio statistic of linkage, , to beL

significant, equivalent to a LOD score of 3. Under the
alternative hypothesis of linkage, the statistic is expected
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Figure 3 Bias in QTL-heritability estimate at true position of QTL for significant LOD scores. p overall additive trait heritability2h
( , unless otherwise indicated); p additive trait heritability attributable to QTL. The indicated sample sizes refer to numbers of two-2 2h p 0.5 hq

offspring nuclear families. See text for details of the approximate analytical approach.

to be distributed as a noncentral x2 random variable with
1 df and noncentrality parameter equal to the expected
value of the statistic on the data—that is, (Stu-y p E [L]
art and Ord 1991). Let us denote this density function
as . The expected QTL-heritability estimate at′2x [L,1,y]
the true QTL location, given that the test statistic is
significant—that is, , is given byL � l

�

ˆ 2 ′2(h d L)x [L,1,y]dL∫ q
lˆ 2[ ]E h p . (3)�q

′2x [L,1,y]dL∫
l

The denominator represents the pointwise power to detect
linkage in a data set. The division by this quantity is
required to ensure that the integration is done over a
proper density function, integrating to 1, because the ex-
pectation is computed conditional on the test statistic be-
ing significant. Williams and Blangero (1999) have de-
rived approximate analytical expressions for the power
of VC linkage analysis for a variety of pedigree structures,
in the presence of complete, error-free information on
chromosomal segregation and phenotypes. They showed
that the expected value of the likelihood-ratio statistic for
a given data set is a function of both the QTL heritability
and the overall heritability of the trait. Specifically, y p

, where is a constant for a given data set2 2E(L) ≈ (h ) c cq

and total heritability. Furthermore, when full and accurate
information on chromosomal transmissions and pheno-
types is available,

Lˆ 2( )h FL ≈ ,�q c

because of the one-to-one correspondence of LOD score
and QTL-heritability estimate for a given data set in that
situation (see fig. 2). By substituting these two expres-
sions into equation (3), one obtains

�

L ′2 2 2� x [L,1,(h ) c]dL∫ qc
lˆ 2[ ]E h p (4)�q

′2 2 2x [L,1,(h ) c]dL∫ q
l

As an example, for a data set comprising nuclear ped-n
igrees consisting of two parents with two offspring, the
constant is given by

8 6 42h � 2h � 3h � 4
c p n (5)6 4 2( )2 2h � 5h � 4

(Williams and Blangero 1999), under the assumption of
complete and accurate information on chromosomal
transmissions and phenotypes.

Figure 3 shows the expected bias in the QTL-herita-
bility estimate as a function of the sample size (i.e., the
number of two-offspring nuclear pedigrees) and the true
QTL heritability, for fixed overall heritability of 0.5 and
LOD scores of at least 3 at the true position of the QTL.
The bias is shown to be a function of the sample size and
the true QTL heritability, such that for a smaller sample
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Figure 4 Conceptual representation of genomewide bias as a function of sample size. p additive trait heritability attributable to QTL2hq

in population; p its sample estimate; p its mean sample estimate. The biases for the two sample sizes are indicated by the thickˆ ˆ2 2h E[h ]q q

horizontal arrows. See text for details.

size and/or a smaller true QTL heritability, the bias is
larger. Notice that the curves are quite linear and parallel,
with slopes of ∼�1, when power is low. In other words,
the QTL-heritability estimates are quite constant for dif-
ferent true underlying QTL heritabilities—that is, ˆ 2h pq

—and thus are virtually independ-2h � bias ≈ constantq

ent of the true QTL heritability, just as observed by
simulation.

For completeness, figure 3 also shows the bias, for a
fixed sample size of 500 pedigrees, as a function of the
overall trait heritability, to show that the bias also de-
pends on this trait-specific quantity. This is also apparent
from equations (4) and (5), which show that the non-
centrality parameter is a function of the overall trait
heritability, in addition to the QTL heritability and the
sample size, among other factors. The higher the residual
genetic correlation among relatives, the greater the
power (Williams and Blangero 1999) and the smaller
the bias for a given data set.

Figure 4 is an attempt to explain graphically why the
bias decreases with an increased sample size, for a given
locus-effect size in the study population. There are two
components to the explanation. First, everything else
being equal, the larger the sample size, the smaller the
variance of the sample estimate of the locus-specific ef-
fect-size. In the figure, this is indicated by the narrower
density function of for the larger sample. Secondly,ˆ 2hq

everything else being equal, the larger the sample size,
the greater the power to map a locus of a given effect
size. The bias, which results because the locus-specific

effect size is estimated only when the test statistic is
significant, is thus reduced, because a larger sample need
not be as extreme, with respect to its locus-specific effect
size estimate than a smaller sample, to yield a statistically
significant finding. In the figure, the shaded area under
each curve corresponds to the power of a sample of that
size and, equivalently, to the proportion of samples of
that size from which the locus-specific effect size is es-
timated and reported. A corollary of this is that when
a LOD score of, say, 10 is reported, its associated ge-
notype-phenotype parameter estimate(s) is more believ-
able (i.e., is expected to be less biased) than at a less
convincing LOD score of, say, 4. However, studies of
such high power to detect genes influencing truly com-
plex traits appear unrealistic, at present, for most com-
plex-trait loci—or, at least, may be achievable only by
nonrandom ascertainment schemes, in which case the
ascertainment bias is expected to be large and potentially
uncorrectable.

Replication

The literature is rife with publications reporting seem-
ingly convincing evidence for the presence of a locus at
a given chromosomal position for some complex
trait—findings that have never been replicated. The dif-
ficulty of replicating a significant linkage and/or asso-
ciation finding for a complex trait in an independent
sample can be disheartening. However, it should not be
surprising at all, even if the initial localization is, in fact,
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Figure 5 Relationship of bias in QTL-heritability estimate and probability of replication failure. p additive trait heritability attributable2hq

to QTL. The indicated sample sizes refer to numbers of two-offspring nuclear families. See text for details on analytical approach.

correct (Suarez et al. 1994). This can be seen if one views
the issue of replication in light of the bias discussed here.
The two issues are really one and the same: when power
is low—as has been shown empirically to be the case in
gene mapping for complex traits—considerable luck is
required to obtain a significant true finding, and the
resulting bias in locus-specific effect size estimate is cor-
respondingly large. If one assumes that a published lo-
cus-specific effect-size estimate of some initial study is
accurate when performing power calculations for a rep-
lication study, one most likely overestimates the power
to replicate, perhaps greatly so, ultimately resulting in
likely replication failure. A corollary is that failure of
replication does not imply that a reported finding is false,
even though it does point out that the locus-specific ef-
fect-size estimate from the initial study is likely an
overestimate.

More formally, as shown above, the bias in locus-
specific effect-size estimation is inversely related to the
power of a study. The pointwise failure to replicate, or
1�power, is given by

�

′21 � x [L,1,y ]dL ,� rep

lrep

where is the expected likelihood-ratio statistic for theyrep

replication study and is the critical value for declaringl rep

replication significant, here assumed to correspond to a
LOD score of 3, as before. In figure 5, “probability-of-
replication-failure” curves (i.e., “1�power” curves) are
superimposed on the bias curves of figure 3, as a function
of the true underlying QTL heritability and the sample
size, using the same data structures (two-offspring nuclear
pedigrees) and conditions (overall heritability of 0.5 and
complete and accurate information on phenotypes and

chromosomal transmissions) as before. Note that the bias
does not disappear until the sample size is large and/or
the true QTL heritability is sizeable; in either of these
cases, power would be high. Most current genetic studies
of complex traits are probably underpowered and are
subject to a significant upward bias in locus-specific effect-
size estimates.

It should be mentioned that the prospects of repli-
cation are likely even poorer when the validation sample
comes from a population that differs genetically and/or
environmentally from the population used in the original
study. Obviously, there are genetic differences among
human populations, as a result of our evolutionary his-
tory, even though interpopulation genetic variation ap-
pears to be smaller than intrapopulation genetic varia-
tion (see, e.g., Weiss and Terwilliger 2000), and there
are environmental and cultural differences as well (see,
e.g., Terwilliger et al., in press). The mere fact that a
locus was successfully mapped in one population makes
it likely that the locus can more easily be mapped in that
population than in another.

Discussion

Bias Elimination?

A key question is whether it is possible to avoid or
reduce this bias. Given that estimates of locus-specific
effect size can be virtually independent of the true effect
size, as shown above, any hopes of satisfactory avoid-
ance of bias appear to be misguided, even in the absence
of pointwise biases. A single data set of limited size sim-
ply cannot be used to reliably estimate both locus po-
sition and effect size, at least for a locus of small effect.

Let us nonetheless discuss one attempt at bias reduc-
tion, because it is quite intuitive and appears promising
at first glance. One could ask the following question:
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Figure 6 Density functions of significant LOD scores as a function of QTL heritability. p LOD score; p additive trait heritability2Z hq

attributable to QTL. The given power numbers refer to a sample of 1,000 two-offspring nuclear families. See text for details on analytical
approach.

given a data set and a significance criterion chosen a
priori, what unknown true QTL heritability is most
likely to have produced the observed results? One could
try to address this question by, for example, equating
the observed QTL-heritability estimate, , with its ex-ˆ 2hq

pected value given an assumed true QTL heritability,
, and then solving the following equation, based on2hq

equation (4) above, for :2hq

�

L ′2 2 2� x [L,1,(h ) c]dL∫ qc
lˆ ˆ2 2 2h p E h d h p .( ) �q q q

′2 2 2x [L,1,(h ) c]dL∫ q
l

(If the equation has no solution, the estimate of the un-
derlying QTL heritability in the population would be
0.) In principle, this approach would also allow com-
putation of confidence intervals for the unknown true
QTL heritability. The fundamental problem with such
an approach is that the corrected QTL-heritability es-
timate would be very crude, with an extremely wide
confidence interval. The reason is that for low-power
investigations, such as most complex-trait–mapping
studies, the expected value of the likelihood-ratio sta-
tistic is quite small; as a consequence, only the upper
tails of different noncentral x2 distributions would be
compared with one another, and these tails overlap sig-
nificantly. This is demonstrated in figure 6, which shows
LOD score density functions for a data set of 1,000 two-
offspring nuclear families (as before) for different un-
derlying values of , conditional on the LOD score be-2hq

ing significant (�3). Note the wide overlap of the various
distributions.

The crudeness of such bias correction is not surprising.
We all know that a LOD score of, say, 3, may be a false
positive (i.e., ). Of course, the LOD score may2h p 0q

also be a true positive, giving evidence of a true locus
with . If there were a statistical technique by which2h 1 0q

the bias could be accurately corrected, this would mean,
in essence, that there is information allowing us to dis-
tinguish true and false LOD score peaks from each other,
on the basis of their magnitude alone. Of course, this is
not possible.

Pointwise Replication

The only realistic option for bias elimination appears
to be the use of independent data sets for locus mapping
and for estimation of the locus-effect size (Utz et al.
2000). One or several data sets are used for model se-
lection and others for parameter estimation. Optimally,
different sampling schemes are used for these two pur-
poses, the former being designed to maximize mapping
power and the latter to be representative of the target
population as a whole (see, e.g., Terwilliger et al., in
press). If the locus-specific parameters are estimated in
a new data set at the exact chromosomal position where
a LOD score peak occurred in an earlier study, the bias
from genomewide LOD score maximization is com-
pletely avoided, if we assume that the estimates are re-
ported independent of the significance of the localization
signal. In fact, because the peak in the initial study likely
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occurred, by chance, some distance away from the true
locus position, pointwise replication in a different sam-
ple is expected to furnish a QTL-heritability estimate
that is somewhat lower than the true value at the actual
location of the gene, if we assume the absence of point-
wise sources of bias.

There are many difficulties with replication as cur-
rently practiced in the field of gene mapping for complex
human traits, however. Different data sets often come
from different populations. In general, no two human
pedigree samples can be genetically identical, in contrast
to inbred animal species, and environmental and cultural
variation is likewise unavoidable, contrary to experi-
mental laboratory conditions (for a general discussion,
see Lindsay and Ehrenberg [1993]). In addition, it is not
clear, for a wide variety of reasons, whether peaks at
similar chromosomal locations in separate samples nec-
essarily point to the same underlying genetic factor. This
formulation alone already points to the next problem,
namely that estimates of locus effect size at a putative
QTL position identified by an initial study are often only
reported for those studies that replicate the earlier find-
ing—that is, those that provide at least some evidence
for a locus in that region of the genome. Furthermore,
most studies use nonrandom ascertainment, leading to
potentially uncorrectable pointwise biases.

Generality of Results

The most important aspect of this paper is that our
findings have ramifications for joint estimation of locus
position and effect in general, no matter what method
is used for mapping or what locus-specific parameters
are estimated. Of course, the findings are in no way
limited to genetic studies but apply equally to other mul-
tiple-testing problems in epidemiology (Thomas et al.
1985) and elsewhere. QTL heritabilities estimated in VC
linkage analysis were merely an example used here. In
a linkage and/or association study in general, only the
trait phenotypes and the marker genotypes are observed,
which are correlated with each other only indirectly, via
the generally unobservable trait locus genotypes (Göring
2000; Terwilliger and Göring 2000; Weiss and Terwil-
liger 2000). Estimation of any parameters relating mar-
ker genotypes and trait phenotypes are thus subject to
genomewide sampling bias, since all tests of linkage and/
or association can be conceptualized mathematically in
a form equivalent to equation (1), and all genomewide
scans are equivalent to equation (2). The same basic
fallacy therefore also applies to estimation of locus-spe-
cific dominance effect sizes, locus-specific recurrence risk
to relatives, and locus allele-/genotype-specific attribut-
able risk. The same holds for estimation of gene # en-
vironment interactions (Melchinger et al. 1998; Utz et
al. 2000) and gene # gene interactions (i.e., epistasis).

In fact, because higher significance levels should argu-
ably be employed for testing for such interactions, since
there are more potential tests, the bias is expected to be
even greater. The same is true for genomewide associ-
ation studies and joint linkage and association studies.
Estimates of trait-locus allele/genotype frequencies and
penetrances, recombination fractions, etc., are also sub-
ject to bias. Obviously, the problem cannot be avoided
by using one method for mapping and another for locus-
specific effect-size estimation, given that all methods de-
veloped for gene mapping better be correlated, as they
strive to model the same underlying biological realities.
Joint estimation of locus position and effect simply does
not work on the same data set, at least when power is
as low as it is for complex traits, on which most of us
are currently focusing our efforts.

Differential Information Content throughout the
Genome

Occasionally, one might be faced with the following
situation: two LOD score peaks of nearly identical mag-
nitude are observed, but the associated locus effect-size
estimates are quite different. In the absence of any other
relevant information, such as the existence of candidate
genes, is it reasonable to give follow-up priority to the
chromosomal region with the larger QTL-heritability es-
timate? We argue that it is not. This hypothetical situ-
ation is only possible when the effective sample size, in
terms of informative “equivalent meioses” (Edwards
1976), differs between those two chromosomal regions.
We would suggest that additional markers be genotyped
near the peak with the larger locus-specific effect size
estimate, to bring the local information content up to
that of the chromosomal region of the other peak. One
would then be in a better position to decide which peak
to pursue. If additional genotyping is not possible, one
might even argue that the putative locus with the lower
heritability estimate might be more believable, because
the evidence for this locus is based on a larger number
of informative meioses (i.e., a larger effective sample
size).

Conclusions

We have demonstrated, by simulations and approximate
analytical expressions, that QTL-heritability estimates at
LOD score peaks in genomewide VC linkage analysis
are grossly biased upwards, even though such estimates
can have fairly small pointwise biases under certain cir-
cumstances. The bias is shown to depend on the true
parameter value, the sample size, and the study design
(among other factors), which together also determine the
power of a study. In realistic situations, estimates of QTL
effect size can be virtually independent of the true effect
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size. We have further shown that there appears to be no
satisfactory way of correcting for the genomewide bias
within a study, suggesting that pointwise estimation on
an independent data set may be the only meaningful
approach to improved parameter estimates. Most im-
portantly, it is argued that the results presented here for
VC linkage analysis apply to all statistical methods of
gene localization and their estimates of parameters char-
acterizing the genotype-phenotype relationship.

Given the magnitude of the bias in most real-world
studies, as judged by the results presented here, state-
ments such as our own “Also, unlike most penetrance
model-free linkage analysis methods, the variance-com-
ponent method can be used both for localization of
QTLs and for obtaining good estimates of the relative
importance of the QTL in determining phenotypic var-
iance in the population” (Almasy and Blangero 1998)
are wishful rather than realistic, at least when viewed
in the context of a genomewide scan. We simply should
not expect to be able to map loci and estimate their
effects from a single genome scan, even when the data
set is large compared with those used in most current
studies. When estimates of locus-specific effect size are
published after a genomewide scan is conducted, we
should keep in mind that these estimates are almost
certainly biased upwards, probably to a large degree.
By always keeping this bias in mind, we can hope to
avoid overestimation of the importance of the identified
loci, as most of us are prone to do. This would also
allow us make more-realistic assumptions about the
likely true locus-specific effects on which to base our
own power calculations for mapping of complex traits.
Moreover, we would be less likely to overestimate the
likely effectiveness of potential future drugs targeting
the identified genes. Lastly, given the equivalence of the
factors leading to bias and to replication failure, we also
would no longer be surprised by how difficult it is to
successfully replicate an earlier gene localization for a
complex trait in an independent sample.
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